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Abstract—To achieve smart cities, real-world trace data sensed
from the GPS-enabled taxi system, which conveys underlying
dynamics of people movements, could be used to make urban
transportation services smarter. As an example, it will be very
helpful for passengers to know how long it will take to find a
taxi at a spot, since they can plan their schedule and choose the
best spot to wait. In this paper, we present a method to predict
the waiting time for a passenger at a given time and spot from
historical taxi trajectories. The arrival model of passengers and
that of vacant taxis are built from the events that taxis arrive
at and leave a spot. With the models, we could simulate the
passenger waiting queue for a spot and infer the waiting time.
The experiment with a large-scale real taxi GPS trace dataset is
carried out to verify the proposed method.

Index Terms—Smart city; taxi trace data; arriving model;
passenger’s waiting time;

I. INTRODUCTION

Smart city is featured with the utilization of information

and communication technology (ICT) to achieve sustainable

development of cities. Within these years, the development of

pervasive sensing, communication, and computing technology

makes it possible to collect, share, and understand the dynam-

ics of a city. These techniques could also benefit the smart city

applications in transportation, urban planning, public health,

public security, and commerce [1].

Currently, there are tremendous amount of sensors scattered

pervasively around our physical world. These sensors can

record the states and behaviors of physical objects, individuals

and the environment. This big data presents an opportunity and

also a challenge, which is to extract semantics and knowledge

from it, and to model and re-recognize the original physical

world. Based on the understandings of data in cyber world, the

real world could be impacted with applications in everyday

life, industry and commerce.

With GPS devices installed, taxi, as an important urban

vehicle, is generating massive trace data every day. For ex-

ample, In Hangzhou, an 8-million-population city in China,

9,000 taxis take more than 0.8 million passengers and generate

ten millions GPS records per day. In the Shanghai City, with a

population of 23 millions, there are 50,000 taxis carrying three

millions passengers while leaving sixty millions of records

every day.

*Corresponding author

Such traces may be helpful for improving taxi services,

which are provided usually in two manners: 1) passengers

make an appointment for a taxi in advance; 2) passengers wait

on sides of a street for a vacant taxi passing by. The first case

is less frequently used; it usually occurs when people have

a fixed schedule. This paper focuses on the second one and

predicts how long a passenger will wait for a vacant taxi at a

spot from trace data.

Waiting is common in the main type of taxi service. The

reason that passengers have to wait for public transportation is

that (1) public transportation is limited and cannot be available

in any time; (2) mobility of passengers is not organized and

may happen at any time. Unlike public vehicles, which have a

regular route and schedule, taxi, as a kind of particular public

vehicles, runs a customized route to meet personal transporta-

tion requirement. The personalization and customization of

taxis results in uncertainty of taxi service and waiting time.

From a psychological view, waiting is a problem because

waiting time could be long and uncertain. People dislike

uncertainty; moreover, the longer they wait, the more anxious

they become. Waiting may annoy passengers and impede

customers to choose taxi as way of going out in (1) it brings

uncertainty to the customers’ travelling schedule; (2) waiting

itself disturbs people while long time waiting debases service

quality [2]; (3) waiting time may be treated as money in

decision making [3].

The problem of waiting for taxis is more and more severe

in China, led by the increasing population density and limited

traffic facilities. Firstly, waiting time could be long. For

example, in Beijing, during the rush hour, people have to wait

for 20 minutes to take a taxi. Moreover, there can be tens of

passengers waiting in a queue in places with high demand of

transportation, such as coach/train stations.

Predicting wait time for vacant taxis could help passengers

to reduce passengers’ dissatisfaction. With waiting time pre-

diction, (1) people would know how long they wait and won’t

be anxious when waiting; (2) people can decide not to waste

their time if need long waiting; (3) people can rearrange their

schedules to be punctual; (4) people could know where they

can take taxis easily and find the best spot to wait.

It is not extensively investigated to predict the waiting

time to find the next vacant taxi for a passenger. Traditional
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researches in the transportation community have ever exploited

waiting time, along with taxi fare, disposable income, and

occupied taxi journey time, to measure the quality of taxi

service [4], [5]. However, traditional prediction is coarse-

grained in that they calculate waiting time for large zones

and considered no variation in a day. For example, in [5], they

divide Hong Kong, whose area is 1,100 square kilometers into

only 15 zones, and calculate a constant waiting time for each

zone. Such calculation may not be appropriate since, according

to our observation, actual waiting time varies with time and

spots.

With increasing number of taxis in large cities equipped

with GPS sensors, the emergence of taxi GPS data, which

largely promotes researches on taxi services, may help predic-

tion of waiting time. Previous work has shown taxi traces have

promising applications in guiding drivers to find passengers

[6], providing professional route navigation [7], and detecting

abnormal taxi traces [8]. The data could provide information

about traces of vacant taxis, which is very helpful for predict-

ing waiting time of a passenger for a vacant taxi.

Given a spot and the time, the problem of predicting waiting

time is non-trivial. If there is only a single passenger at the

spot, the waiting time is just the time between his arrival and

the arrival of the next vacant taxi. In such case, waiting time

can be calculated simply with prediction of the arriving time

of the next vacant taxi. However, as we can see in real world,

there may be many passengers waiting and competing for taxis

at the same spot. The challenge of the problem is to model

the competitive behavior for predicting waiting time.

In this paper, we solve the problem by assuming that the

competing strategy follows a first-come-first-served way; that

is, passengers wait in a queue for vacant taxis. Contributions

of this paper are as follows:

1) We investigate the problem of predicting waiting time

for a passenger to take a taxi at a spot in a competitive

environment, which has never been addressed before.

The prediction considers not only the spatial and tempo-

ral variation, i.e., it is closely related to where and when

the passenger wants to take a taxi; but also considers the

competitions of passengers when taking taxis.

2) We build models for the arriving of passengers and

vacant taxis. Taxi traces contain direct information about

arrival of vacant taxis, and also pick-up events that relate

to passengers’ arrival.

3) We present a prediction algorithm to calculate waiting

time with taxi traces, given the spots, taxi traces and road

map. Firstly, we extract sequence of events (arrival and

departure) for each spot by the intersections of traces

and spots. Then, historical events are used for training

arrival model of passengers and vacant taxis. Finally, the

arrival models are used for predicting waiting time with

parametric and nonparametric method.

II. PROBLEM DESCRIPTION

Waiting time of passengers for vacant taxis could be much

different when varying time and spot. Human activity exhibits

patterns that vary with time and place [9]. Such variation leads

to difference of human mobility demands in different spots.

For example, more passengers move from suburban district to

downtown in the morning while they leave at night. It finally

causes the temporal and spatial variance of waiting time. Thus,

we describe the problem as follows.

PROBLEM: given taxi trace data Tr from history and a spot r,
predict the expectation of waiting time wt a passenger needs to
take a vacant taxi in the spot at time t. From the mathematical
view, the problem is to solve the function wt = f(t, r), given
history data Tr.

If there is only one passenger requiring a taxi at the spot

r, he/she can be served immediately after the next vacant taxi

arrives; the waiting time equals the serving time wt = ts.

However, a spot usually has a few passengers waiting for a

taxi, especially in rush hours. We assume that the passengers

obey the first-come-first-served rule. For this case, the waiting

time equals the time in a queue tq plus the serving time ts:

wt = tq + ts.

Therefore, waiting time could be calculated by modeling a

queue for each spot r. The state of a queue is represented with

its length, which increases/decreases with the arrival of a new

passenger/vacant taxi. The expectation of queue length l can

be modeled with arriving rate of passengers μ and vacant taxis

λ. Then, since the arriving rate for vacant taxis is λ, waiting

time is calculated as:

wt = l/λ =
g(μ, λ)

λ
.

The form of g (μ, λ) depends on how we model the arrival

of passengers and vacant taxis. When they are modeled as

Poisson processes,

g (μ, λ) =
λ

μ− λ
.

The challenge for the problem turns to the estimation of

arriving rate of passengers and vacant taxis, which is an

optimization problem:

(λ, μ) = argmaxλ,μP (Tr|λ, μ) ,

where Tr is the set of traces. In detail, the two parameters

are optimized separately. We use non-homogeneous Poisson

process to model arriving processes of passengers and vacant

taxis. Then, the model is solved by maximizing the probability

of generating the arriving processes in history trace data.

It is not difficult to calculate λ because the arriving of vacant

taxis could be extracted from the taxi trace data. However, it

is non-trivial to calculate μ, since there is no information on

passengers’ arriving in the taxi trace data. In this paper, we

solve the problem through estimating passenger arrivals with

pick-ups in the sequence of events in each spot. We define the

concept event sequence, which depicts the sequential events

of taxi arrival and departure in each spot:

Seqe = e1 → · · · → ei → · · · → en;
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where each event ei = (tia, s
i
a, t

i
l, s

i
l) denotes that a taxi with

status sa (occupied: 1, vacant: 0) arrives at ta and leaves at

time tl with status sl.

The event sequence contains information about the arriving

of vacant taxis (a vacant taxi comes and leaves with vacant

state) at a spot, which is used for vacant taxis’ arriving model;

and about the pick-up event (a vacant taxi comes and leaves

with occupied state) at a spot, which is used for modeling

passengers’ arriving.

The event sequence can be extracted from taxi traces.

Movement of a taxi forms a trace, which is recorded in trace

data by sampling in discrete time series. Each trace of a

single taxi is represented as a time-ordered sequence of GPS

samplings:

tr : p1 → · · · → pi → · · · → pn;

where pi � (t, long., lat., s). Trace data is a set of taxi traces:

Tr = {tri}.

III. PREDICTING WAITING TIME

Waiting time prediction is to calculate the time a passenger

would wait to take a taxi after he arrives at a spot at a time. To

solve the problem, we use event sequences to learn the arrival

model of vacant taxis and passengers. Based on the arrival

model, we develop a parametric method to calculate waiting

time from queuing theory, and propose an improvement of

the method by exploiting nonparametric model of vacant taxi

arrival.

A. Arrival Model: Non-homogeneous Poisson Process

The statistics of arriving number N(t) of vacant taxis or

passengers until time stamp t could be denoted as a counting

process{N(t), t ≥ 0}, which counts the number of events

N(t) that occur in a given time interval [0, t]. In this paper,

for each spot r, such counting process is modeled with Non-

homogeneous Poisson process (NHPP):

Counting process {N(t), t ≥ 0} is called a non-

homogeneous Poisson process (NHPP) when the arriving

rate changes with time λ(t). ∀s, t, N (t+ s) − N (s) ∼
Pois (μ (t) t):

P {N (t+ s)−N (t) = n} = e−μ(t)t (μ (t) t) n

n!
,

n = 0, 1, · · · ; μ (t) = 1
t

´ t+s

s
λ (y) dy [10].

Moreover, we assume arriving rate in NHPP to be a piece-

wise constant function in our model: μ(t) = λi, ti ≤ t <
ti+1, t1 = 0. Thus, the counting process {N(t), ti ≤ t <
ti+1} of arriving passengers and vacant taxis for each spot r
could be assumed as a general Poisson process with arriving

rate λi,r:

P {N (ti +�t)−N (ti) = n} = e−λi,r�t (λi,r�t) n

n!
,

n = 0, 1, · · · .

B. Model Solution: Mining Traces for Arrival Rate

This section uses event sequences to estimate arriving rates

of vacant taxis and passengers. The event sequence for a spot

depicts the arriving and leaving of taxis including their status,

it also contains information of pick-up event (a vacant taxi

comes but leaves with occupied status). The relation between

such event sequences and a model for arriving of vacant taxis

is obvious. Arriving of passengers is not directly known, but

can be inferred from pick-up events in these sequences.

For each spot r and each time slot [ti, ti+1), we estimate

the parameter λi,r in our model, given the event sequence for

the spot: Seqe = e1 → · · · → ei → · · · → en.

With the event sequence, we can estimate the arriving rate

μi,r in NHPP for the model of arriving vacant taxis directly.

Firstly, for each spot r, the sequence of arriving vacant taxis is

extracted from the event sequence Seqe by retaining elements

with sa = 0 (a taxi arrives with empty state); the new sequence

could be expressed as Seqv = av1 → · · · → avj → · · · →
avn; avj = (tja, 0, t

j
l , s

j
l ). Then, the unbiased estimation of the

arriving rate of vacant taxis can be calculated given each time

slot [ti, ti+1):

μi =
k − j

tka − tja
(1)

where the jth (kth) event avj (avk) is the arrival of the first

(last) vacant taxi in the time slot; tj−1
a < ti ≤ tja ≤ ti+1; ti ≤

tka ≤ ti+1 < tk+1
a .

We estimate the arriving rate in NHPP for the model of

passengers’ arriving by firstly calculating the occurrence rate

of pick-up events λi,r. A pick-up event is that a vacant taxi

comes but leaves with passenger: sa = 0, sl = 1. For

each spot, we extract the sequence of pick-up events Seqp
from the event sequence Seqe of the spot: Seqp = pe1 →
· · · → pej → · · · → pen, pej = (tja, 0, t

j
l , 1). With the

pick-up event sequence, the pick-up time is calculated as

ptj =
(
tja + tjl

)
/2; the pick-up interval between the jth and

kth pick-up event is ptk − ptj =
(tka+tkl )−(tja+tjl )

2 . Then, the

rate of pick-ups is estimated with:

λi =
2 (k − j)(

tka + tkl
)− (

tja + tjl

) (2)

where tj−1
a < ti ≤ tja ≤ ti+1; ti ≤ tka ≤ ti+1 < tk+1

a .

Finally, we could prove that our unbiased estimation λi,r

for the rate of pick-ups is also an unbiased estimation for the

arriving rate of passengers. This is proved with the equality

of their expectation. As illustrated in Fig. 1, the jth passenger

comes at tj ; the kth passenger comes at tk; which are both

unknown in trace data. However, we can observe the jth pick-

up in ptj and the kth pick-up in ptj . Moreover, note that

the waiting time is just the time interval between a passenger

arrives and takes a taxi; thus we have wtj = ptj − tj and

wtk = ptk−tk, which are assumed to obey a same distribution.

Expectation of wtj −wtk is 0; thus the interval between two

pick-ups and the arriving interval of these two passengers has
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the same expectation. Therefore, their reciprocals, the arriving

rate of passengers and the occurrence rate of pick-ups also

have the same expectation and our estimation is also unbiased

for the arriving rate of passengers.

Figure 1: Illustration of passenger’s arriving and pick-up during two

adjacent vacant events.

C. Prediction with Arrival Model

Based on the model for arrival of passengers and vacant

taxis, two methods are used to predict waiting time: para-

metric method and nonparametric method. For the paramet-

ric method, we calculate waiting time with queuing theory,

given arriving rate of passengers and vacant taxis. For the

nonparametric method, we need the model of passengers’

arrival and historical data of taxis’ arriving, which includes

more information than the theoretic model. Then we generate

a waiting queue and calculate the waiting time.
1) Predicting with Parametric Method: Based on the Pois-

son processes of arrivals of passengers and vacant taxis, our

parametric method uses queuing theory to predict the waiting

time. Assume that the mean for arriving rate of passengers

is λ, the mean for arriving rate of vacant taxis is μ, and the

probability for the state of the queue, namely that n passengers

wait for taxis at a spot, is Pn. The state of the queue will be

changed when a passenger arrives (n + 1) or a vacant taxi

arrives (n − 1). After a long time, the waiting queue will

become stable; such that the rate the queue leaves a state

equals the rate the queue turns into the state:{
λP0 = μP1

(λ+ μ)Pn = λPn−1 + μPn+1, n > 0
(3)

Pn could be solved with Eq. 3 by appending the basic

assumption that
∑

i Pi = 1:

Pn =

(
λ

μ

)n (
1− λ

μ

)
(4)

The expectation of the queue length is:

L =
∑

nPn =
λ

μ− λ
(5)

The expectation of waiting time is:

wt = L/λ =
1

μ− λ
(6)

2) Predicting with Non-parametric Taxi Arrival: Since ar-

rivals of vacant taxis could be extracted from trace data, which

are closer to reality than those modeled with Poisson process,

we promote a nonparametric method that improves parametric

method with actual data of vacant taxi arrivals in history. In

this method, we estimate the parameter of Poisson process for

passengers’ arrival (λ) as above and generate the arrival of

passengers. Then we calculate the waiting time as the time

between arrival and pick-up of each passenger.

How to generate the arrival passengers? Firstly, the time

interval between events in Poisson process follows exponential

distribution; the time t between the arrivals of two passengers

follows an exponential distribution: t ∼ exp (λ):

f(t) = λe−λt, t ≥ 0.

Secondly, we must ensure that each passenger have arrived

before he is picked up. The pick-up event is Seqp = pe1 →
· · · → pej → · · · → pen, pej = (tja, 0, t

j
l , 1). Denote the

arrival time of passengers (tp) as a sequence: tp1 → · · · →
tpj → · · · → tpn, then tpj−1 ≤ tpj ≤ pej .ta. Thus, arrival

of the first passenger is generated randomly before the first

pick-up. Arrival of the jth (j > 1) passenger follows arrival

of the j−1th passenger; the interval t = tpj − tpj−1 is drawn

randomly from the truncated exponential distribution:

f (t) =
λe−λt

´ pej .ta−tpj−1

0
λe−λt

, 0 ≤ t ≤ pej .ta − tpj−1.

Then, waiting time is calculated as:

wt =
1

n

∑
(pej .ta − tpj) .

D. Algorithm Overview: Predicting Waiting Time from Traces

Prediction Algorithm
Input: {Trd}, T rd : p1 → p2 → · · · → pn,
G = 〈V,E〉, V = {vi}, vi = (xi, yi), E = {{vi, vj}};
spots {r}, each spot is a polygon r = (v1, v2, · · · , vn).
1: Mapping Traces: {Trd} ⇒ {Trc};

Trd : p1 → p2 → · · · → pn; Trc : s → v1 → · · · → vn
→ d, s.t. vi ∈ V and {vi, vi+1} ∈ E

2: Extract Event Sequence for r: {Trc} ⇒ {Seqe}
Seqe = e1 → e2 → · · · → en, ei = (tia, s

i
a, t

i
l, s

i
l), t

i
a and

til is the time a trace intersects the spot r.
3: Estimate Vacant Taxis’Arrival Rate: {Trc} ⇒ {μi}

given Seqe, retains the event of vacant taxi’s arrival as Seqv
= av1 → av2 → · · · → avn, avj = (tja, 0, t

j
l , s

j
l ); for the ith

time slot [ti, ti+1), find the first (jth in Seqv) and last (kth
in Seqv) arrival of vacant taxi; arrival rate of vacant taxis is:

μi =
k−j

tka−t
j
a

.

4: Estimate Passengers’ Arrival Rate: {Trc} ⇒ {λi}
given Seqe, retains the pick-up event as Seqp = pe1 → pe2
→ · · · → pen, pej = (tja, 0, t

j
l , 1); for the ith time slot

[ti, ti+1), find the first (jth in Seqp) and last (kth in Seqp)

pick-up; arrival rate of passengers is: λi =
2(k−j)

(tka+tk
l )−(t

j
a+t

j
l )

.

5: Calculate Waiting time:
Parametric method: for the ith time slot, wti =

1
μi−λi

;

Nonparametric method: for the ith time slot, generate arrival
of passengers as the sequence: tp1 → tp2 → · · · → tpn;
wti =

1
n

∑
(pej .ta − tpj).

Output: waiting time wti,r for time slot [ti, ti+1), and spot r.
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Based on the model and methods above, we propose the

whole algorithm for predicting waiting time, given taxi traces,

road map and spots. In this algorithm, for each spot, the event

sequence (taxi arrives at and leaves a spot) is extracted for

estimating arrival models and calculate the waiting time.

Firstly, to calculate when a taxi arrives at or leaves a

spot, we need to calculate its actual traces. Trace data, which

is discrete samplings of traces, could be used for inferring

actual traces by mapping to road network. Road network is

represented as a graph (G = 〈V,E〉). V = {vi}, vi = (xi, yi)
represents an end point of a road segment. E = {ei,j},

ei,j = {vi, vj} represents the road segment with vi and vj
as end points.

Figure 2: Illustration of trace mapping.

Figure 2 illustrates the process of trace mapping, in which

we find the shortest path on the map as the continuous

trajectory (algorithm 1 in [11]). Firstly, points in the trace

Trd : p1 → p2 → · · · → pi → · · · → pn are mapped to the

nearest points on road p′1 → p′2 → · · · → p′i → · · · → pn’

. Then, the nearest route between each two points are found

and expressed as p′i → v1 → · · · → vi → · · · → vn → p′i+1,

where vi ∈ V and {vi, vi+1} ∈ E. Finally, by connecting

all segments between p′i and p′i+1, the trace is retrieved:

Trc : p
′
1 → v1 → · · · → vi → · · · → vn → p′n.

In the step of extraction of event sequence, we calculate the

time a taxi arrives at and leaves a spot with the intersections of

the continuous trajectory and a spot. The intersection is got by

assuming that taxi moves uniformly during the trace between

each two adjacent points. The status of a taxi when it arrives

at (leaves) a spot equals to the status of the nearest record (in

time) among its trace data.

An ideal output for prediction is a function of waiting time

value wt which varies with passenger’s arriving time t for

each spot r: wt = fr (t). In this paper, we consider a simpler

version; we divide a whole day into several time segments and

assume that waiting time changes little in each segment. Thus

this function is piecewise constant: wti = cr,i, where r is the

spot and i is the ID of time slot which arriving time t lies in:

t ∈ [ti, ti+1).

IV. EXPERIMENT

A. Dataset

Taxi trace data is from more than 7,000 taxis in the

Hangzhou City (of 8 million residents), which is generated by

GPS devices installed on taxis with a sampling time of nearly

1 minute. The dataset has 200 billion records from April 1st

2009 to April 20th 2010. Each record contains the following

fields:

• VEHICLE_ID: unique ID of the taxi in the dataset;

• LONGITUDE: current longitude of the taxi;

• LATITUDE: current latitude of the taxi;

• STATE: current status (occupied/vacant) of the taxi;

• TIME: sampling timestamp in the format of “YYYY-

MM-DD HH:MM:SS”.

B. Setup

Our experiments are carried separately for test cases, namely

each time slot of the test day in each spot. Each test case

includes a predicted value and the ground truth. Prediction

error is the absolute difference of predicted value and ground

truth.

We predict and test for each spot and each time slot sepa-

rately. The spots are defined by clustering pick-up positions.

Road segments were used previously as spots [12]. But for

segments longer than 1 kilometer, passengers at two ends of

the segment have different waiting times. Considering such

disparity of waiting time, a revised DBSCAN method [13] is

used to cluster the pick-up positions; each cluster’s convex

hull then defines a spot. 913 spots are retrieved. The time slot

is defined by dividing a whole day into slots with same length.

For each spot, the predicted value is calculated by training

our methods with trace data from time slots in days before the

test day. The length of the time period between the training

data and prediction data is prediction length. The number

of days used for training is the length of training data. For

example, given 10 days as the length of training data and the

prediction length, when we predict the 33th day of the whole

385 days, we use data from the 14th day to the 23th day.

The ground truth is calculated by simulation. The simulation

method is similar to the non-parametric method. For each test

case, we simulate and generate passengers with the Poisson

distribution learned from test data. With the data of arriving

taxis in the test day, we then calculate the waiting time as test

value.

With the prediction error, the performance of our methods

is analyzed by: (1) optimizing values of parameters, including

length of training data, and length of time slot; (2) comparing

the performance of the two methods, namely parametric and

nonparametric method; (3) going deep into the performance

of the method with the distribution of the prediction error

and the long-term prediction (predicting more than one day

after training data) error; (4) showing how time and region ID

affects the prediction error.
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C. Results and Analysis
1) Performance Analysis: Firstly, two important parame-

ters, namely the length of training data, and the length of time

slot, are adjusted. The length of training data is important since

the fewer time length of data for training, the less cost to build

a prediction model, while possibly worse prediction result.

Length of time slot is respected with the basic assumption

that the waiting time is a piecewise function, constant in a

time slot.
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Figure 3: Prediction error with each parameter combination.
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Figure 4: Comparison of the two methods under (a) different lengths

of time slot; (b) different lengths of training data.

For both of the two methods (parametric and nonparametric

method), we vary the length of training data from ten days to

nearly one year, and the length of time slot from half an hour to

half a day. For the nonparametric method, the prediction error

with each parameter combination is shown in Fig. 3. Within

these combinations, the prediction error is minimized when

the length of time slot is half an hour and 180 days’ data is

used for training. This parameter combination also optimizes

the parametric method.
The two methods, used for prediction of waiting time,

are compared by performance under varied parameter values.

Firstly, we fix the length of training data to the best parameter

value (180 days) and change the length of time slot. The

prediction error of the two methods is shown in Fig. 4a.

The result indicates that the nonparametric method reduces

the error of parametric method to half for different lengths of

time slot. Secondly, the length of time slot is fixed to be the

best (half an hour) and the length of training data is varied. As

shown in Fig. 4b, the performance of nonparametric method is

always better than the parametric method for the varied lengths

of training data. The nonparametric method is better since we

use arrivals of vacant taxis extracted from trace data, which

are closer to reality than those modeled with Poisson process

in parametric method.
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Figure 5: (a) Distribution of the error with the nonparametric method

under the best parameter combination; (b) illustration of long-term

prediction error.

2) Error Distribution and Long-term Performance: This

experiment is to further evaluate performance of our methods

by error distribution and long-term prediction error. We use the

nonparametric method under the best parameter combination

to calculate the error distribution. The result in Fig. 5a shows
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that the mean error is around 3 minutes and the standard

deviation of the error is about 10 minutes. Moreover, 86.65%

of the test cases have error less than 5 minutes. For the

long-term prediction, the best parameter combination is also

used in nonparametric method; the prediction length is varied

from one day to 200 days. As Fig. 5b shows, the error of

prediction changes from 189.5 seconds to 209.5 seconds when

we increase the prediction length. Thus our method is rather

stable even when predicting waiting time of 200 days later.

3) Error Analysis: We analyze how time and space affects

prediction error in this section. Firstly, we use 180-days data

for training nonparametric method with different lengths of

time slot, and calculate prediction error of each test day (from

the 181st day to 385th day in data). As shown in Fig. 6,

our result shows that prediction error changes with time and

follows a certain variation pattern that is similar under different

parameter combinations (length of slot is half an hour and two

hours).
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different parameter combination. Each row of pixels is the

prediction error for all spots under a parameter combination.

Label of the Y-axis is the parameter combination, which is

written as ’length of training data’-’length of time slot’.

Secondly, we use nonparametric method under different

parameter setting to calculate prediction error for each spot,

which is then normalized in each parameter setting. The grey-

scale map of the normalized error is shown in Fig. 7, with

every row of pixels representing normalized prediction error

for all spots with corresponding parameter combinations. This

figure shows in each row the grey-scale of pixels change

according to a pattern. Moreover, such pattern is similar in

different rows. This means that error varies with spots and

such variation pattern is similar for all parameter setting, which

means that the prediction error is related to where passengers

wait.

V. RELATED WORK

We summarize previous works related to this paper as the

following three classes:

A. Improving Taxi Service

With taxi GPS traces, more and more researchers are

devoted to helping taxi service system by (1) recommending

how to find passengers: [14] consider the strategy of finding

passengers with hunting or waiting, they mine the strategy

for regions and rank the strategy for recommendation. (2)

recommending pick-up position: several works [15] try to

improve efficiency of taxi service by reducing the time a taxi

spends on finding passengers. They find the spatial-temporal

pattern of pick-ups; detect the hotspots where passengers

are picked up frequently, and recommend some hotspots to

vacant taxi drivers or passengers. (3) recommending waiting

position: [12] recommends the place to wait for a taxi based on

waiting time prediction. [16] presents a recommender system

for both taxi drivers and people expecting to take a taxi

with by recommending both the place to pick up a passenger

and to wait for a taxi. (4) monitoring service quality: [8]

proposes a method to detect anomalous taxi trajectories; such

abnormal traces could be used to monitor the misbehavior of

taxi drivers. [1], [17] reviewed the research issues and potential

applications of traces for smart cities.

B. Model for Arriving Processes

The statistics of arriving number of vacant taxis or pas-

sengers during a given time interval could be denoted as

a counting process. Traditionally, counting process for such

arrivals was often assumed to be Poisson process [18], [19]

with constant arriving rate. However, with more and more

traffic data collected, researchers observe that human activity

varies with time and arrivals of passengers or transportation

tools are actually non-homogeneous in time. The arriving of

vacant taxis is verified to obey non-homogeneous Poisson

process (NHPP) in previous work [12], namely the arriving

rate is changes with time. Arriving of passengers for taxi

service has similar behavior with passengers of other traffic

tools, which is also modeled with NHPP [20].

C. Predicting Waiting Time

The work about prediction of waiting time is also important

and attracts researchers. Traditional researches can only calcu-

late a general value of waiting time for a large area constant

at every day and waiting time is then treated as a measure

of service quality of taxi service under different regulations

[21], [22]. As an example, [5] builds macroscopic models to

investigate how regulation affects the demand-supply equilib-

rium of taxi service. In their research, the city Hong Kong is
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divided into 15 districts and the origin-destination demand is

considered based on these districts. These researches calculate

a coarse-grained waiting time and neglect the variation of it

with time and spots because the lack of real world data.

Nowadays, with the emergence of taxi trace data, the

arriving number of vacant taxis and passengers is modeled

and predicted; while the arriving process is unexplored. [23],

[24] predict the number of vacant taxis in a given area based

on time of the day, day of the week, and weather condition.

[25] investigates human mobility patterns in an urban taxi

transportation system and predict the number of passengers

that would arrive at a spot in a given time, with historical pick-

up number. [26] also presents online predictions regarding the

spatial distribution of passenger demand throughout taxi stand

networks.

Recently, [12] mined taxi GPS traces to predict the waiting

time under the condition that only a single passenger waits on

road. They calculated the waiting time with the time between

arrival of the passenger and the next vacant taxi. However,

there may be more than one passengers waiting on road; which

is investigated in details in our paper.

VI. CONCLUSION

Smart city is featured with using ICT infrastructure to

achieve sustainable urban development. Pervasive sensing

technology gathers massive data about dynamics of a city.

Mining from these sensor data to extract semantics about city

dynamics is important both for understanding a city and for

developing smart city applications.

As an example of mining trace data for improving traffic

service, this paper proposes an approach to solve the prediction

problem of waiting time for a passenger at a spot. The

approach models the competition of passengers when waiting

for taxis and considers the variance of waiting time with time

and spots. We develop an algorithm to mine taxi traces, build

the arrival model of passengers and vacant taxis, and predict

waiting time. The performance is validated by a large-scale

real-world taxi trace dataset.

ACKNOWLEDGMENT

This work was partly supported by Qianjiang Talent Pro-

gram of Zhejiang (2011R10078), National Key Basic Research

Program of China (2013CB329504), National Key Technology

R&D Program (2012BAH94F01), the Fundamental Research

Funds for the Central Universities, and Microsoft Research

Asia Academic Program.

REFERENCES

[1] G. Pan, G. Qi, W. Zhang, S. Li, L. Yang, and Z. Wu, “Trace analysis
and mining for smart cities: issues, methods, and applications,” IEEE
Communications Magazine, vol. 51, no. 6, pp. 120–126, 2013.

[2] L. Dube-Rioux, B. Schmitt, and F. Leclerc, “Consumers’ reactions to
waiting: when delays affect the perception of service quality,” Advances
in Consumer Research, vol. 16, no. 1, pp. 59–63, 1989.

[3] F. Leclerc, B. Schmitt, and L. Dube, “Waiting time and decision making:
Is time like money?” Journal of Consumer Research, vol. 22, no. 1, pp.
110–119, 1995.

[4] H. Yang, Y. Lau, S. Wong, and H. Lo, “A macroscopic taxi model for
passenger demand, taxi utilization and level of services,” Transportation,
vol. 27, no. 3, pp. 317–340, 2000.

[5] H. Yang, S. Wong, and K. Wong, “Demand–supply equilibrium of taxi
services in a network under competition and regulation,” Transportation
Research Part B: Methodological, vol. 36, no. 9, pp. 799–819, 2002.

[6] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun, “Where to find my
next passenger,” in Proceedings of the 13th International Conference on
Ubiquitous computing, Beijing, China, September 2011, pp. 109–118.

[7] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “T-drive: enhancing driving
directions with taxi drivers’ intelligence,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 25, no. 1, pp. 220–232, 2013.

[8] D. Zhang, N. Li, Z. Zhou, C. Chen, L. Sun, and S. Li, “ibat: detecting
anomalous taxi trajectories from GPS traces,” in Proceedings of the
13th International Conference on Ubiquitous computing, Beijing, China,
September 2011, pp. 99–108.

[9] L. Liao, “Location-based activity recognition,” Ph.D. dissertation, Uni-
versity of Washington, 2006.

[10] S. Ross, Introduction to probability models. Salt Lake City, Utah:
Academic press, 2009.

[11] C. White, D. Bernstein, and A. Kornhauser, “Some map matching
algorithms for personal navigation assistants,” Transportation Research
Part C: Emerging Technologies, vol. 8, no. 1, pp. 91–108, 2000.

[12] X. Zheng, X. Liang, and K. Xu, “Where to wait for a taxi?” in
Proceedings of the ACM SIGKDD International Workshop on Urban
Computing, Beijing, China, August 2012, pp. 149–156.

[13] G. Pan, G. Qi, Z. Wu, D. Zhang, S. Li et al., “Land-use classification
using taxi GPS traces,” IEEE Transactions on Intelligent Transportation
Systems, vol. 14, no. 1, pp. 113–123, 2013.

[14] B. Li, D. Zhang, L. Sun, C. Chen, S. Li, G. Qi, and Q. Yang, “Hunting
or waiting? discovering passenger-finding strategies from a large-scale
real-world taxi dataset,” in IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOM Workshops),
Seattle, WA, USA, March 2011.

[15] J. Lee, I. Shin, and G. Park, “Analysis of the passenger pick-up pattern
for taxi location recommendation,” in Fourth International Conference
on Networked Computing and Advanced Information Management,
2008. NCM’08., Gyeongju, Korea, September 2008, pp. 199–204.

[16] N. Yuan, Y. Zheng, L. Zhang, and X. Xie, “T-finder: a recommender
system for finding passengers and vacant taxis,” 2012.

[17] P. Castro, D. Zhang, C. Chen, S. Li, and G. Pan, “From taxi GPS traces
to social and community dynamics: a survey,” ACM Computing Surveys,
2013.

[18] P. Marguier and A. Ceder, “Passenger waiting strategies for overlapping
bus routes,” Transportation Science, vol. 18, no. 3, pp. 207–230, 1984.

[19] M. Siikonen, “Elevator traffic simulation,” Simulation, vol. 61, no. 4,
pp. 257–267, 1993.

[20] L. Matias, J. Gama, J. Mendes-Moreira, and J. Freire de Sousa, “Vali-
dation of both number and coverage of bus schedules using AVL data,”
in 13th International IEEE Conference on Intelligent Transportation
Systems (ITSC), Madeira Island, Portugal, September 2010, pp. 131–
136.

[21] A. De Vany, “Capacity utilization under alternative regulatory restraints:
an analysis of taxi markets,” The Journal of Political Economy, vol. 83,
no. 1, pp. 83–94, 1975.

[22] G. Douglas, “Price regulation and optimal service standards: The taxicab
industry,” Journal of Transport Economics and Policy, vol. 6, no. 2, pp.
116–127, 1972.

[23] H. Chang, Y. Tai, and J. Hsu, “Context-aware taxi demand hotspots
prediction,” International Journal of Business Intelligence and Data
Mining, vol. 5, no. 1, pp. 3–18, 2010.

[24] S. Phithakkitnukoon, M. Veloso, C. Bento, A. Biderman, and C. Ratti,
“Taxi-aware map: identifying and predicting vacant taxis in the city,”
in Proceedings of the First International Joint Conference on Ambient
Intelligence, Malaga, Spain, November 2010, pp. 86–95.

[25] X. Li, G. Pan, Z. Wu, G. Qi, S. Li, D. Zhang, W. Zhang, and Z. Wang,
“Prediction of urban human mobility using large-scale taxi traces and
its applications,” Frontiers of Computer Science in China, vol. 6, no. 1,
pp. 111–121, 2012.

[26] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and
L. Damas, “Online predictive model for taxi services,” in 7th Inter-
national Symposium on Intelligent Data Analysis, Helsinki, Finland,
October 2012, pp. 230–240.

1036


